Förster resonance energy transfer photoacoustic microscopy.
نویسندگان
چکیده
Förster, or fluorescence, resonance energy transfer (FRET) provides fluorescence signals sensitive to intra- and inter-molecular distances in the 1 to 10 nm range. Widely applied in the fluorescence imaging environment, FRET enables visualization of physicochemical processes in molecular interactions and conformations. In this paper, we report photoacoustic imaging of FRET, based on nonradiative decay that produces heat and subsequent acoustic waves. Estimates of the energy transfer efficiency by photoacoustic microscopy were compared to those obtained by fluorescence confocal microscopy. The experimental results in tissue phantoms show that photoacoustic microscopy is capable of FRET imaging with an enhanced penetration depth. Through its ability to three-dimensionally image tissue with scalable resolution, photoacoustic microscopy could be a beneficial biomedical tool to broaden the in vivo application of FRET.
منابع مشابه
Deep-tissue photoacoustic tomography of Förster resonance energy transfer.
Förster resonance energy transfer (FRET) is a distance-dependent process that transfers excited state energy from a donor molecule to an acceptor molecule without the emission of a photon. The FRET rate is determined by the proximity between the donor and the acceptor molecules; it becomes significant only when the proximity is within several nanometers. Therefore, FRET has been applied to visu...
متن کاملEngineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging
A subset of the family of fluorescent proteins are the non-fluorescent chromoproteins which are promising probe molecules for use in photoacoustic imaging and as acceptor chromophores in Förster resonance energy transfer (FRET)-based biosensors. Typical approaches for fluorescent protein optimization by screening of large libraries of variants cannot be effectively applied to chromoproteins due...
متن کاملFörster Resonance Energy Transfer-Based Dual-Modal Theranostic Nanoprobe for In Situ Visualization of Cancer Photothermal Therapy
The visualization of the treatment process in situ could facilitate to accurately monitor cancer photothermal therapy (PTT), and dramatically decrease the risk of thermal damage to normal cells and tissues, which represents a major challenge for cancer precision therapy. Herein, we prepare theranostic nanoprobes (NPs) for Förster resonance energy transfer (FRET)-based dual-modal imaging-guided ...
متن کاملOptical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level.
Photoacoustic microscopy (PAM) offers unprecedented sensitivity to optical absorption and opens a new window to study biological systems at multiple length- and timescales. In particular, optical-resolution PAM (OR-PAM) has pushed the technical envelope to submicron length scales and millisecond timescales. Here, we review the state of the art of OR-PAM in biophysical research. With properly ch...
متن کاملProbing Nucleic Acid Interactions and Pre-mRNA Splicing by Förster Resonance Energy Transfer (FRET) Microscopy
Förster resonance energy transfer (FRET) microscopy is a powerful technique routinely used to monitor interactions between biomolecules. Here, we focus on the techniques that are used for investigating the structure and interactions of nucleic acids (NAs). We present a brief overview of the most commonly used FRET microscopy techniques, their advantages and drawbacks. We list experimental appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2012